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The scattering of phonons by vacancies is estimated by a perturbation technique 
in terms of the missing mass and the missing linkages. An argument is given 
why distortion effects can be disregarded. The resonance frequency of the defect 
is sufficiently high so that resonance effects can be disregarded for pbonons in 
the important frequency range for thermal conduction. The theory is applied to 
the thermal resistance by vacancies in cases where the vacancy concentration is 
known: potassium chloride with divalent cations, nonstoichiometric zirconium 
carbide, and tin telluride. 

KEY WORDS: phonons; potassium chloride; thermat resistance; tin telluride; 
vacancies; zirconium carbide, 

1. INTRODUCTION 

Scattering of phonons by point defects in crystals was treated theoretically 
[ 1 ] using perturbation theory and has since been treated by self-consistent 
methods, using Green function techniques. These self-consistent methods 
are needed when the incident phonons are near or above an intrinsic 
resonance frequency of the defect. The physical consequences of those 
resonances have been reviewed by Maradudin [2].  At sufficiently low 
frequencies, however, one could expect perturbation theory to give good 
results provided the unperturbed Hamiltonian of the system is chosen so as 
to minimize the perturbation. When self-consistent calculations have been 
performed, there is, of course no need to revert to perturbation theory. 
However, most of these calculations have been confined to substitutional 
point defects, when the foreign atom differs only in mass from the parent 
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atom (isotopic defects) or differs in mass and nearest-neighbor force 
constants. Not all defects can be reduced to such simple terms. 

Scattering of phonons by a vacancy has proved difficult to treat, since 
a vacancy is a strong local perturbation of the lattice and since it cannot be 
treated as a limiting case of a substitutional impurity. Yet vacancies occur 
frequently in sufficient concentration to affect the lattice thermal conduc- 
tivity even at room temperature, so that it is important to have a 
theoretical estimate of their phonon scattering cross- section. 

The object of this study is to treat the scattering of low-frequency 
phonons by vacancies. At low frequencies the vacancy can be regarded as a 
perturbation. It is argued that the perturbation is one that corresponds to 
the removal of the mass of one atom and the force constants of two atoms. 

Even though perturbation theory is expected to hold only at low fre- 
quencies, calculations of thermal resistivity need not be confined to low 
temperatures. The low-frequency phonons make a surprisingly important 
contribution to the thermal conductivity even at ordinary and high 
temperatures, and the point-defect thermal resistivity is determined by the 
scattering cross section at such low frequencies as to allow the results of 
perturbation theory to be still applied [3]. 

In order to justify our simple method of estimating the perturbation, 
we must show that the distortion of the lattice around the vacancy is of 
little consequence to phonon scattering. Also, to justify perturbation theory 
one must show that the characteristic resonances of the vacancy tie high 
enough so as not to influence the scattering at the frequencies important to 
the thermal conductivity. 

2. SCATTERING OF PHONONS BY VACANCIES 

The phonon relaxation rate due to point defects is, at low frequencies, 
of the form 

1/z = Bro4 ( 1 ) 

where co is the angular frequency. The coefficient B depends on the nature 
of the point defect and is proportional to the concentration. 

Following the notation of an earlier review [4], let the unperturbed 
Hamiltonian be 

H ~ = ~ Ma~Za*(q) a(q) (2) 
q 

where M is the average atomic mass, the summation is over all normal 
modes q, and the displacement amplitudes a(q) and a*(q) include phonon 
annihilation and creation operators, so that 

a(q) = (h/Mo9) 1/2 N I/2 (3) 
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and a*(q) contains the factor ( N +  1) 1/2, where N is the initial number of 
phonons in the mode. 

Writing the perturbation Hamiltonian due to defects in the form 

H' = ~ c(q, q') a*(q') a(q) 
q,q' 

the relaxation rate of a lattice mode q can be shown to be 

(4) 

2 1 - co s (o ) -  o)') t 
1/r = ~  [c(q, q,)12 M2O)O) ' t(c~ o)') 2 (5) q' 

Here the sum is over all normal modes q', i.e., over all wave vectors and 
polarizations. The time parameter t in the resonance factor disappears 
on summation. In Eq, (5) it was assumed that the perturbed region or 
scattering center is small compared to the wavelength and that Ic(q, q,)[2 is 
just a function of co, so that scattering is isotropic. Thus, 

l/z = 2rc(M2O) 2)-  t Ic(co) 12 g((D) (6) 

where g(o)) is the number of lattice modes in the frequency interval do) 
about co. 

Choosing a Debye model for g(o)) with phonon velocity v 

g(o)) = 3(292t~3) -1 602 

Consider now a single substitutional defect of mass difference AM in a 
crystal of G atoms, the perturbation is 

H'  : �89 a (7) 

where fi is the displacement velocity of the defect atom. Expressing u in 
terms of a superposition of waves, one finds 

Ic(o))l 2 = (1~12)(AM~G) 2 ~o 4 (8) 

and one obtains 

7 = ~ -  | ]\--~-] 4~-v3 (9) 

where a 3 now denotes the atomic volume. 
Let us now consider a vacancy on the basis of the same model. A 

vacancy is equivalent to removing from the material one atom and all the 
linkages between that atom and its neighbors. The missing mass of the 
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atom implies the removal of kinetic energy equal to the kinetic energy 
residing in that atom, i.e., 

T ' =  �89 2 (10) 

where u is the displacement of the missing atom due to all the lattice waves. 
Similarly, the removal of a linkage between an atom (for convenience 
located at the origin) and a neighbor l implies the removal of potential 
energy 

V,= 1 Y'. k z [ u ( l )  - u(0)] 2 (11 ) 
z 

where kz is the (tensor) force constant of the linkage. 
Now, according to the virial theorem, the potential and kinetic 

energies of the crystal are equal, and so are the time averages of T and V 
pertaining to one atom. However, since every linkage is shared by two 
atoms, V' is then twice the potential energy pertaining to one atom, or on 
the average V' = 2T'. Thus one may treat the energy as equivalent to an 
isotopic defect of strength A M = 3 M ,  and one may obtain for the 
relaxation rate 

1 9a 3 (2) 4 

"r G 4rOY 3 (12) 

This simple result is the basis of our calculations. It is necessary, however, 
to justify it by showing that distortion of the lattice is unimportant and, 
also, that the vacancy does not have any low-lying mechanical resonances 
since resonances substantially increase scattering near the resonance 
frequency and above it, if the resonance frequency is well below the Debye 
frequency. 

3. THE ROLE OF DISTORTION 

It is important  to examine the role of the strain field in scattering of 
phonons since strain would change the local value of ~o for a fixed q, thus 
contributing to the perturbation. 

Consider the crystal as a continuous medium with a spherical 
inclusion of radius ro. The displacement field is given by the expression 

D(r)  = Ar/r 3 + Er, r > r0 
(13) 

= D r / r ,  r < r o 

where r denotes the position relative to the center of the inclusion or 
scattering center. 
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The term Er can be discarded because it expresses a uniform dilation 
and therefore does not contribute to the scattering of phonons. 

It has been shown [1 ] that the perturbation Hamiltonian due to a 
displacement field D(r) is 

H'  - 2~/M G ~ coo~'[V. D(r)]  e i~q-q')ra*(q') a(q) (14) 
r,q,q" 

where ~ is the Griineisen parameter. But V. D ( r ) =  0, and at first sight this 
model does not lead to any phonon scattering. Nevertheless, an analogy 
can be drawn between the strain field and the electromagnetic field caused 
by a point charge as was done by Carruthers [5]. Thus, 

D(r) = (A/r 2) 6(r - x) (15) 

where x is the location of the scattering center. 
The 3 function implies that the contribution comes from the scattering 

center. In the case of the vacancy, it follows that distortion causes no 
additional disturbance since the linkages at this location have been 
removed and therefore cannot be modified by the distortion. 

However, since the nearest linkages are shown to be so important, it is 
necessary to consider a discrete lattice. Let us first assume that the linkages 
are present and let us make an estimate of their contribution. 

In the continuum treatment, the summation over r in Eq. (14) is 
replaced by an integration, giving 4zcA/a 3, where A is related to the radius 
R of the vacancy and AR, the displacement of the atoms nearest to the 
vacant site, by 

A = R 2 A R  (16) 

with AR negative for an inward displacement. We then obtain 

c(q, q') = -(Src/Ga 3) tIMR 2 AR co'co (17) 

and replacing a 3 by (4zc/3) R 3, we obtain 

c(q, q ' ) =  - ( 6M/G)  rI(AR/R) co'co (18) 

Let us now perform analogous calculations on a discrete model. The 
potential energy of one lattice site in the unperturbed crystal can then be 
written as 

Ep= ~/2G Z [ I - e (q ) ] [ I - e (q ' ) ] e  ix~q-"') 
I,q,q' 

x (1 -- eial q)(1 -- e iat'q') a(q) a*(q') (19) 
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where I is a unit vector giving the direction of the neighboring atoms, 2 is 
the force constant for relative displacement in the direction of linkage. 
Also, ~(q) is the unit vector denoting the polarization of wave q. 

A force constant change 62 will give rise to a velocity change 6v 
related by 

~52 = 2(M/a 2) v 6v (20) 

A change in the velocity in turn causes a change in the potential and 
kinetic energies, so that the perturbation Hamiltonian becomes 

2M 
H ' =  ~ ~, v 6 v ( I ) [ I . o ( q ) ) ( I . ~ ( q ' ) ] ( 1 - e  ia~ q ) (1 -e ia~q ' )a (q )a* (q ' )  

q,q' 

(21) 

where the summation is over all the disturbed linkages denoted by I. In the 
long wavelength limit we have 1 - e ial q "~ - i a I .  q and we obtain 

, 2 M _  
c(q,q ) =--~- Z v 3v(I)[I �9 o(q)3 [I - o(q')](I  �9 q)(I �9 q') (22) 

1 

and 6v is related to 3R by the expression 

6v/v = - 4  AR/R  (23) 

where { is an anharmonicity coefficient. 
Treating all directions as uncorrelated 

2 M  
c(q, q ' ) =  - - - ~ -  ~ • AL(l) R-lcoco ' (24) 

3 

where AL(I) specifies the change in length of a linkage l =  al and is a 
fraction of the displacement AR of the nearest neighbors. 

Using a simple cubic lattice and assuming that the magnitude of the 
displacement field at a given lattice site falls off like the square of the dis- 
tance from the vacancy center as in Eq. (13), we evaluate the summation 
over the disturbed linkages by considering successive shells around the 
vacancy center 1-63. We obtain 

c(q, q ' )=  -3 .73 (M/G)  ~(AR/R) co'co (25) 

If the six nearest linkages are considered to be present, 6AR should be 
added to ZzAL, so that 

c(q, q') = -7 .73 (M/G)  r  co'co (26) 
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Only first-neighbor interactions are taken into account in these 
calculations; the consideration of the second nearest-neighbor interactions 
is expected to decrease these coefficients in absolute value. 

We can compare Eq. (26) to its analogue in the continuum 
approximation, Eq. (18), for the case where the nearest linkages are 
included. The difference is less than 15% since ~ is normally smaller than 
the Griineisen parameter. 

Going back to Eq. (8), in which AM is replaced by 3M, we get 

Ic(co)l = (~)1/2 Mco2/G (27) 

The contribution of the strain field, excluding the nearest linkages, 
becomes 

Ic(co)L : 3.73~(AR/R) Mco2/G (28) 

Even if ~ AR/R were as large as 0.1, the distortion would make a 
contribution to Ic(co)l no more than about half of that given by Eq. (27). 
However, Eq. (28) is probably an overestimate, since all the linkages were 
made to contribute in the same sense. It thus appears that the distortion 
effects can be neglected for vacancies. 

4. LOW-LYING RESONANCES 

The perturbation method is valid provided that there are no low-lying 
resonances since resonances change the scattering appreciably if they are in 
the low portion of the frequency spectrum. Also, the exact form of the scat- 
tering at high frequencies is relatively unimportant to the thermal conduc- 
tivity, so that the effect of any resonances at high frequencies is not impor- 
tant. Therefore, a detailed investigation of the dynamical properties of the 
solid containing a vacancy is essential to test that there are no resonances 
at low frequencies, before we apply the result of perturbation theory. 

In general, the vibrational properties of a point defect are determined 
by the changes of neighboring force constants and the difference between 
its mass and that of the normal atom of the perfect crystal. Particular 
resonance frequencies co o which are the solutions of the equations of 
motion are associated with the defect and the positions of coo with respect 
to the bands of allowed phonon frequencies of the host crystal are critical 
for the phonon scattering problem. Two important cases arise. 

(1) If coo is higher than the frequencies which can propagate as lattice 
waves through the crystal, or if coo is inside a gap between branches (for 
the case of non-Bravais lattices or polyatomic crystals), then non- 
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propagating or localized modes exist and their displacement field will fall 
off exponentially with the distance from the defect. 

(2) If coo is within the bands of allowed phonon frequencies of the 
crystal, we can have a situation referred to as a resonance state or 
pseudolocalized mode in which the defect oscillates almost independently 
of its surroundings. The most important effect is the strong scattering of 
phonons of frequencies close to coo if the value of COo < �89 This in turn 
will give rise to a pronounced depression in the thermal conductivity curve. 

The equations of motion of a simple cubic lattice containing one 
vacancy was set up in the notation of Elliott [7].  The vacancy was 
represented simply by removing the mass and the nearest longitudinal force 
constants. The equations of motion contain the eigenvalues and frequencies 
of the dynamical matrix of the perfect lattice, a longitudinal force constant 
2 between nearest neighbors, the mass M, and the frequency of vibration CO 
at which the lattice is being excited. The details, which follow the method 
of Dawber and Elliott [8] ,  can be found in Ref. 6. The equations simplify if 
a Debye spectrum is assumed. The Debye frequency COd is related to 2 and 
M by 

2/M= (6n)--2/3 COD2 (29) 

For  modes of spherical symmetry the resonance frequence COo = XCOo is 
the solution of 

- -  ( 2 ) (  ~'rr212/3 (30) x l n ( l + x )  x l n ( 1 - x ) = 2 +  ~ ~,o j 

and for these modes COo = 0.97COo. 
For  modes of lower symmetry the equations of motion are more com- 

plicated, and the resonance equation is the vanishing of a determinant. In 
this case it is not possible to find a closed equation for the resonance 
frequency, but it was possible to show by substitution that there is no 
resonance frequency below �89 Details can be found in Ref. 6. 

Since there are no low-lying resonances, the results of perturbation 
theory can be used with confidence not only in the lower half of the 
frequency spectrum, but also at higher frequencies, since the effects of 
resonance are large only if COD/CO 0 is large. 

It must be stated that we have taken a simple model using only 
nearest-neighbor forces and omitting force constants for transverse relative 
displacements. It is possible, but unlikely, that our conclusions would not 
be valid for a more general model, unless the defect lacked structural 
rigidity, as would be the case of two missing oxygen atoms in SIO2. 

The present conclusion is apparently contradicted by the results of 
Schwartz and Walker [9] ,  who observed an inflection in the thermal c o n -  
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ductivity of KC1 at 30 K, induced by a variety of divalent impurities. They 
attributed this to resonance scattering by the vacancies accompanying these 
impurities. However, it was not known at that time that the top of one of 
the transverse branches lies at roughly four times that frequency, i.e., a t the  
apparent resonance frequency [-10]. Since the point-defect scattering of 
Eq. (t) contains a factor co 2 which represents the density of states g(~o), a 
maximum in g((o) would lead to enhanced scattering similar to resonance 
scattering. However, this enhanced scattering would be present for any 
point defect (or, for that matter, for any defect), no matter what its nature 
may be. Although these authors were probably correct in attributing the 
excess scattering at least in part to vacancies, the maximum in the 
scattering is not due to a mechanical resonance of the vacancy, but due to 
a maximum in g(c0) due to the accumulation of modes at a zone boundary. 
This, of course, was not known when Ref. 9 appeared. 

5. APPLICATIONS 

To test the theory, a comparison is made with thermal conductivity 
measurements on solids containing known vacancy concentrations: 
potassium chloride with divalent solutes, nonstoichiometric zirconium 
carbide, and tin tetluride with tin vacancies. 

5.1. Vacancies in Potassium Chloride 

The substitution of a divalent cation in place of the potassium ion 
creates a vacancy in the potassium sublattice so as to preserve electric 
charge neutrality. It had been suggested [11 ] that this may be the source 
of the point-defect resistance which is apparent in the early measurements 
by de Haas and Biermasz [-12]. To test this hypothesis, Slack [ t3]  added 
CaC12 into KC1 crystals and measured their thermal conductivity. He used 
a radiLoactive tracer technique to determine the calcium content. He 
concluded that there was a point-defect resistance even in the absence of 
calcium. He attributed this to isotopic mass-defect scattering of the 
phonons and was the first to recognize the importance of this mechanism. 
He was also able to measure the additional thermal resistance due to 
calcium and its accompanying vacancy. However, to deduce the strength of 
the corresponding point-defect scattering, one has to take account of 
"normal," i.e., momentum-conserving, three-phonon processes, and Slack 
used the only treatment available at that time [11 ], which treats the nor- 
mal processes as very strong at low frequencies but neglects them at high 
frequencies. This inconsistency was removed by Callaway [14]. That 
treatment, published 2 years after Slack's paper, has since become standard 
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in analyzing thermal conductivity data. It thus seems worthwhile to 
reevaluate Slack's measurements using Callaway's treatment to deduce the 
strength of the point-defect measurement. It will be seen that this 
reevaluation does not change the deduced strength of point-defect 
scattering very much. 

Slack [13] measured the thermal conductivity from 2 to 30 K of six 
KC1 crystals: two were free of CaC12 and the others had concentrations of 
calcium ions ranging from 0.6 to 2 x 10  - 4  per cation. These should have an 
equal vacancy concentration, and the vacancies could be associated with 
the divalent impurities. It appears probable that the specimens of higher 
concentration also contain colloid inclusions; therefore the present analysis 
is restricted to a pure sample (Slack's sample A) and to sample N, 
containing 0.006% divalent cations, or 0.003% on a per-atom basis. 

The point-defect relaxation rate is expressed in a form equivalent to 
Eq. (9): 

1/z(O)) = Bo) 4 = 3a3(GTrv 3) 1 $2c0 4 (31) 

where S 2 is a measure of the strength of point-defect scattering in the 
notation of Ref. 1. 

Using Callaway's method [14], the pure sample was analyzed in 
terms of boundary scattering, point-defect scattering, and normal and 
Umklapp three-phonon processes. The best fit was obtained with the 
following relaxation rates. 

Boundary scattering with a constant mean free path L: 

1/zB = v/L = 2.69 x 10Ss-1 (32) 

Point-defect scattering, expressed in the form of Eq. (31): 

B a = 2 . 2 4 x 1 0  43s3 (33) 

The theoretical value of B for isotope scattering is 1.33 x 10-43S 3, SO that 
the observed value of B is almost twice that value. 

Umklapp processes: 

1/% = 1.5 x 101~ e x p ( -  100/T) s 1, (Tin K) (34) 

where x is the "reduced frequency" hc~/2r&T. 
Normal processes with the frequency and temperature dependence 

expected from the theory of Landau and Rumer [15]: 

1/z N=30x T 5 (35) 
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This value is lower than the theoretically expected one by roughly a 
factor 5. 

With these parameters, Slack's thermal conductivity curve for his pure 
sample A could be fitted over the entire temperature range, with only a 
minor deviation (less than 5% above the measured curve) around 11 K 
[-6]. 

Using the same parameters except for an increase in point-defect 
scattering for example N, the best fit was obtained with a value for B of 

BN = 8 x 10-43s3 (36) 

The fit is not as good as for sample A. The theoretical curve departs from 
the observed one near the maximum at 6 K and lies progressively lower as 
the temperature is increased. A decrease in BN raises the curve markedly at 
low temperatures and causes the curves to cross above 6 K, while an 
increase in BN makes the theoretical curve fall below the observed one at 
all temperatures. The departure of the curves at best fit is in the same sense 
as would be caused by small clusters, since they would enhance the 
resistance at low temperatures relative to that at higher temperatures. The 
optimum fit gives greatest weight to the low temperatures where the 
conductivity is determined by boundary and point-defect scattering and is 
not very sensitive to three-phonon processes. 

Subtracting Eq. (33) from Eq. (36) one obtains for the additional 
point defects 

B = 5.8 x 10-43s3 (37) 

Expressing B in terms of Eq. (31), using for I/G the concentration of 
impurity cation per atom, i.e., 3 x 10 -5, one obtains for the calcium ion 
plus the vacancy 

$2= t,1 (38) 

This is not very different from the value of S 2 = 1.4 obtained by Slack, not 
surprisingly, since in both analyses the greatest weight was given to the 
temperature below the maximum. What the present analysis shows is that 
the thermal conductivity at higher temperatures demands less scattering at 
frequencies above about 5x 10 H Hz or 3 x 1012rad.s -I  than given by 
Eq. (34). This is in the opposite sense to what one would expect from 
resonance scattering. 

The present theory for scattering by the vacancy predicts 

S =  S~ + S 2 (39) 
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where 

$1 = (12) 1/2 A M / M =  -0 .30  
(40) 

$2 = (12) -~/2 ( - 2 )  = -0.58 

Here S~ is due to the missing mass, except that d M / M  is increased slightly 
in magnitude to 1.05 because K is slightly heavier than the average atomic 
mass of KC1; $2 = - 2  is due to the missing linkages. Thus S = -0.88, and 
for the isolated vacancy $2=  0.77. 

For  the Ca ion in place of K, $1 = 0.02 and is thus negligible, while the 
term $2, describing the force constant perturbation, is not known. 
However, it is probable that $2 is positive, and therefore S is positive. If the 
two point defects were associated, their contribution to S would be in 
opposition and their combined scattering parameter S 2 would be less than 
0.77. If the vacancy and calcium ion are disassociated, both would 
contribute to S z additively, and the combined parameter S 2 would be 
larger than 0.77. Since the thermal conductivity is fitted with $ 2 =  1.1, it 
seems probable that the two point defects are not associated. With a cation 
concentration of only 6 x 10 -5 and a binding energy of 0.32 eV [13],  it is 
probable that most defects are not associated. If this is accepted, the overall 
thermal resistance is not inconsistent with the calculated vacancy scattering 
cross section. 

5.2. Carbon Vacancies  in Zirconium Carbide 

Taylor and Storms [16] measured the high-temperature thermal 
conductivity of nonstoichiometric ZrC with various concentrations of 
carbon vacancies. Around room temperature one can deduce the electronic 
component of the thermal conductivity from the electrical conductivity 
using the Sommerfeld value of the Lorenz ratio and thus deduce the lattice 
component,  which is a substantial fraction of the total. 

At and above the Debye temperature, the lattice thermal conductivity 
of a solid containing point defects can be expressed as [17] 

to(T) = ~co(T)(coo/coD) tan - 1 (COD/COO) (41) 

where coo is the frequency at which the intrinsic and the point-defect 
scattering are equal, co D is the Debye frequency, and ~c0(T) is the thermal 
conductivity in the absence of point defects. The value of coo depends on 
the intrinsic and the point-defect relaxation rate, and co~ oc T/c, where c is 
the defect concentration. The defect concentration (carbon vacancies per 
carbon atom) varied from 3.5 to 31.8%. The theoretical concentration 
dependence and Eq. (41) were used to find Xo (300)= 0.8 W.  cm -1 .  K 1, 
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while Taylor and Storms [16] suggested a value of about 0.5 W.cm - t .  
K 1 from visual inspection of the concentration dependence. 

With ~%(300) thus determined, one can obtain coo/e)D for various 
concentrations. Writing the point-defect relaxation as  Bo) 4 and expressing 
the intrinsic relaxation rate 

1 = bco2 r (42) 
2:0 

in terms of ~c o through the relation ~Co= 3 vk/(coDZbT), and also using 
co02 = b T / B  and coD/v = (6zrZn) I/3, where n is the number of atoms per unit 
volume, one finds 

B = (6rc2n)l/3 k/[2rc2~c0(T) (2)0 2-~ (43) 

Expressing B in terms of S 2 using Eq, (31), one obtains 

B = 6.48 x 10-41S2/G S 3 (44) 

where G is the number of atoms per vacancy. Comparing this with the 
values of co o determined for various concentrations and using Eq. (43), a 
good fit was obtained for $2= 0.98. 

The theory, modified for the fact that the missing mass is only 14/52 of 
the average mass, yields 

S 2 ~" (12)- 1(2.27) 2 = 0.43 (45) 

so that the observed scattering cross section is roughly twice the theoretical 
one. 

While the agreement between theory and experiment is not good, it 
should be noted that the experimental value of S 2 depends strongly on ~:0 
and that a smaller value of ~c o would have increased coo and decreased B, 
thus reducing the discrepancy. 

5.3. Tin Vacancies in Tin Teiluride 

Tin telluride also occurs in a nonstoichiometric form, and the concen- 
tration of tin vacancies can be determined from the carrier concentration. 
The thermal conductivity of several tin telluride samples was measured by 
Damon [ 18 ]. He separated the thermal conductivity into an electronic and 
a lattice component by using the Sommerfeld value of the Lorenz ratio at 
100 K. Since the Debye temperature is 130 K, this is high enough to use 
Eq. (41) to describe the lattice thermal conductivity in the presence of point 
defects. 
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The value of ~0 was again obtained by extrapolation and at 100 K 
Ko=0.13W.cm - j . K  -~. For a vacancy concentration of 2.5x 1073 per 
atom, one finds COo/CO D = 0.375. From Eq. (43) one can find a value of B, 
and from Eq. (31) a corresponding value of S 2. The value found in this way 
is $2= 0.89. The theoretical value, since the two atoms have nearly equal 
weight, is $2=0.75. It is satisfactory that in this case, where both the 
vacancy concentration and ~co are determined with reasonable confidence, 
the agreement between theory and measurement is good. 
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